企业项目管理、ORK、研发管理与敏捷开发工具平台

网站首页 > 精选文章 正文

一款超好用的Python开源可视化库(python可视化需要什么库)

wudianyun 2025-06-28 17:15:02 精选文章 2 ℃

今天给大家推荐的开源项目是一个非常好用的可视化库 -- PyG2Plot


安装和使用都非常简单,如下:

1、安装

pip install pyg2plot

2、使用方法

渲染成 HTML

from pyg2plot import Plot

line = Plot("Line")

line.set_options({
  "data": [
    { "year": "1991", "value": 3 },
    { "year": "1992", "value": 4 },
    { "year": "1993", "value": 3.5 },
    { "year": "1994", "value": 5 },
    { "year": "1995", "value": 4.9 },
    { "year": "1996", "value": 6 },
    { "year": "1997", "value": 7 },
    { "year": "1998", "value": 9 },
    { "year": "1999", "value": 13 },
  ],
  "xField": "year",
  "yField": "value",
})

# 1. 渲染成 html 文件
line.render("plot.html")
# 2. 渲染成 html 字符串
line.render_html()

在 Jupyter 中使用

from pyg2plot import Plot

line = Plot("Line")

line.set_options({
  "height": 400, # set a default height in jupyter preview
  "data": [
    { "year": "1991", "value": 3 },
    { "year": "1992", "value": 4 },
    { "year": "1993", "value": 3.5 },
    { "year": "1994", "value": 5 },
    { "year": "1995", "value": 4.9 },
    { "year": "1996", "value": 6 },
    { "year": "1997", "value": 7 },
    { "year": "1998", "value": 9 },
    { "year": "1999", "value": 13 },
  ],
  "xField": "year",
  "yField": "value",
})

# 1. 渲染到 notebook
line.render_notebook()

# 2. 渲染到 jupyter lab
line.render_jupyter_lab()

目前 pyg2plot 只能提供简单的一个方案 API:Plot,使用方法如下:

  1. Plot(plot_type: str): 获取 Plot 对应的类实例。
  2. plot.set_options(options: object): 给图表实例设置一个 G2Plot 图形的配置,文档可以直接参考 G2Plot 官网,未进行任何二次数据结构包装。
  3. plot.render(path, env, **kwargs): 渲染出一个 HTML 文件,同时可以传入文件的路径,以及 jinja2 env 和 kwargs 参数。
  4. plot.render_notebook(env, **kwargs): 将图形渲染到 jupyter 的预览。
  5. plot.render_jupyter_lab(env, **kwargs): 将图形渲染到 jupyter lab 的预览。


3、支持图表

pyg2plot 支持很多类型的图表,非常好用,效果图如下:

举几个例子,下面分别是面积图、柱形图、双轴图,可以看到可视化效果是非常棒的。

更多图表样式的绘制可参考:https://github.com/hustcc/PyG2Plot/blob/main/docs/plot.md


4、技术原理

PyG2Plot 原理其实非常简单,其中借鉴了 pyecharts 的实现,但是因为蚂蚁金服的 G2Plot 完全基于可视分析理论的配置式结构,所以封装上比 pyecharts 简介得非常多。

最基本的原理,就是通过 Python 语法提供 API,然后在调用 render 的时候,生成最终的结果 G2Plot HTML 文本,而针对不同的环境,生成的 HTML 稍有区别。

  • 针对 HTML 生成,则直接使用正常的 html 模板,然后 script 引入 G2Plot 资源,生成 G2Plot 的 JavaScript 代码,渲染即可
  • 针对 Jupyter 环境,生成的内容中比较特殊的时候,使用 requireJS 去加载 G2Plot 资源,后续的逻辑一致

这个原理可以理解是所有的语种封装 JavaScript 模块的统一做法。

最近发表
标签列表